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Abstract--Singular perturbation analysis is employed to investigate the heat and mass transfer of chemi- 
cally-reactive steady stagnation flows in catalytic porous beds, under the assumption of a thin thermal 
boundary layer. Results indicate that the control parameters for the reactant concentration are those 
associated with Arrhenius kinetics, i.e., the reaction rate constant, the activation energy and the fluid 
temperature feeding the bed. On the other hand, the governing parameters for the temperature profiles are 
those associated with the chemical reaction heat and the thermal conductivity. The role of the mass 
diffusivity is not important to reactant concentration and temperature, once the mass diffusion boundary 
layer remains within the thermal boundary layer. Brinkman's viscous layer near the impermeable wall is 
included in the present analysis ; however, its effect on the heat transfer and chemical reaction characteristics 

is found to be negligible. © 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

Great attention has been given to chemically reacting 
flows in porous media because of their practical appli- 
cations in the petrochemical and petroleum refining 
industries, as well as in the environmentally clean 
utilization of energy. For example an ammonia pro- 
duction line in the petrochemical industry consists 
of about seven fixed bed catalytic reactors for the 
processes of steam reforming of methane, water-gas 
shift reaction, ammonia synthesis, etc. [1]. In the clean 
utilization of energy, examples include industrial cer- 
amic porous burners [2], catalytic converters in an 
exhaust-gas system [3], and others. A catalytic con- 
verter is essentially a porous bed where residual hydro- 
carbons and carbon monoxide exhausted from an 
internal combustion engine are converted into carbon 
dioxide and water vapor at a relatively low tempera- 
ture. In the above mentioned catalytic reac- 
tors/convertors, the chemical processes range from 
strong endothermic (steam reforming of methane) to 
strong exothermic (exhaust gas conversion). 

The physical geometry shows that the flows in the 
catalytic reactor are usually the combination of a one- 
dimensional flow and a stagnation point flow. Atten- 
tion has been given to the one-dimensional flow 
because it is more commonly encountered in the reac- 
tors. Therefore, in this study we focus on the stag- 
nation point flow in a packed catalytic bed impinging 
on an impermeable wall. 

There exist several works on the reacting stagnation 
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flOWS in pure gas phase, particularly in relation to 
the flame combustion. Chao and Law [4] studied the 
propagation of a premixed stagnation point flame 
based on constant density approximation, while Sato 
and Tsuji [5] on variable approximation. Law and 
Sivashinsky [6], and Giovangigli and Candel [7] stud- 
ied the stagnation point flame impinging on a catalytic 
surface. In these analyses, a one-step irreversible reac- 
tion based on Arrhenius kinetics with high activation 
energy was used. 

Although great effort has been devoted to heat 
transfer in porous media, little attention has been 
given to chemically reacting flows until recently. 
Vijoen and Hlavacek [8] investigated the chemically 
driven convection in a porous medium at low tem- 
perature. Chen et  al. [9] studied the premixed flame in 
a porous medium and found that thermal radiation 
promotes flame stability and propagation speed. More 
recently Chao et al. [10] analyzed the non-premixed 
burning of a condensed fuel in porous media with a 
naturally convective oxidizer adjacent to the imper- 
meable wall. 

Exothermic reactive flows impinging on a layer of 
catalytic porous bed adjacent to an impermeable wall 
were investigated by Chao et  aL [11]. They assumed 
that the thermal conductivity ratio of the bed to the 
fluid is very large to justify as a perturbation par- 
ameter and neglected the viscous effect of fluid near 
the impermeable wall. By considering the special situ- 
ation where the activation energy of the catalytic reac- 
tion is very low and proportional to the root square of 
the bed/fluid thermal conductivity ratio, they analyzed 
two cases when the thickness of the thermal diffusion 
layer is much thicker or thinner than the thickness of 
the porous bed. Their results showed that the most 

2335 



2336 C.-T. HSU and H. FU 

NOMENCLATURE 

B velocity strain rate 
c chemical reaction rate constant 
cp specific heat of fluid 
cos specific heat of solid particles of the 

bed 
De effective mass diffusivity 
G normalized concentration for outer 

solution 
g normalized concentration for inner 

solution 
H thickness of the catalytic bed 
ke effective conductivity of the catalytic 

bed 
K permeability of the catalytic bed 
Le Lewis number 
Pe Peclet number 
P, ratio of Brinkman's layer thickness to 

H 
R gas constant 
Q chemical reaction heat per unit mass 

rate 
T temperature 

normalized activation energy 
T*~ normalized absolute temperature of 

incoming fluid 
u velocity component along the catalytic 

bed 
v velocity component normal to the 

catalytic bed 
l~ normalized reaction rate 

Y concentration. 

Greek symbols 
~e effective thermal diffusivity 
~,,, dimensionless parameter of reaction 

rate constant 
7r dimensionless parameter of chemical 

reaction heat 
A T temperature difference, I Tw- T~I 
e reaction of the thermal boundary layer 

thickness to H 
0 normalized temperature for inner 

solution 
® normalized temperature for outer 

solution 
p viscosity of fluid 
p density of fluid 
q~ porosity of the catalytic bed. 

Subscript 
0 O(1) solution 
1 O(e) solution 
2 O(e ~) solution 
w values at the impermeable wall 

values at far away from the catalytic 
bed. 

Superscripts 
^ inner variable. 

salient physical features occur only when the catalytic 
porous bed is much thicker than the thermal boundary 
layer. 

Although this study was initially motivated by the 
work of Chao et al. [11], here we have investigated 
more generally the reacting stagnation point flows 
in catalytic beds where the chemical reaction can be 
endothermic or exothermic. In addition, we have also 
included the viscous effect and relaxed the assumption 
of very low activation energy. Attention was given 
only to the case when the catalytic porous bed is much 
thicker than the thermal boundary layer near the 
impermeable wall. Naturally the thickness ratio of the 
thermal boundary layer to the catalytic bed becomes 
the small parameter which warrants a singular per- 
turbation analysis. The inclusion of the viscous effect 
leads to the existence of the Brinkman's viscous layer 
near the impermeable wall. The effect of the Brink- 
man's layer on the reacting flow is then characterized 
by the thickness ratio of the Brinkman's layer to the 
thermal boundary layer. Solutions have been obtained 
for different values of Lewis number which measures 
the ratio of mass and thermal diffusion rates of reac- 

tant, as well as for different values of reaction rate 
parameters. The effects of these parameters on flow 
field, heat transfer and reaction characteristics are 
discussed. 

2. FORMULATION 

2.1. Problem definition 
For stagnation flows impinging on a catalytic 

porous bed adjacent to an impermeable wall, the 
results of Chao et al. [11] showed that the con- 
figuration above the catalytic porous bed has little 
consequence to the performance of the catalytic bed 
provided the bed is much thicker than the thermal 
boundary layer. For simplicity, we idealize our prob- 
lem by considering a semi-infinite extent porous 
medium with a two-dimensional steady stagnation flow 
toward an impermeable wall at y = 0 as shown in Fig. 
1. Near the impermeable wall is a packed catalytic bed 
of thickness H. Above the catalytic bed lays the inert 
bed from y = H to oo. We also assume that the cata- 
lytic and the inert beds have the same packing struc- 
ture which yields the same permeability, K, and hence 
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Fig. 1. The schematic of the problem and the coordinate system. 

the streamlines do not experience the interface 
between the inert and catalytic beds. As shown in Fig. 
1, the flow at infinity has a temperature Too and carries 
a reactant of concentration Y~. As the flow enters the 
catalytic bed, chemical reactions take place to cause 
the changes in temperature and the concentration. 
Here, we have studied the case of a constant tem- 
perature Tw at the impermeable wall. (The case of 
constant heat flux can be easily adopted in the present 
analysis.) The conduction results in a thermal bound- 
ary layer near the impermeable wall. Because the 
impermeable wall represents a boundary barrier 
across which no mass transfer can occur, a mass 
diffusion layer is formed near the impermeable wall. 
The viscous effect of the impermeable wall also leads 
to the Brinkman's viscous layer at the proximity of 
the wall. In this study, it is assumed that the thickness 
of the catalytic bed is very large compared with the 
thickness of the viscous layer, the thermal boundary 
layer and of the mass diffusion layer. 

2.2. Governing equations 
It is further assumed that the porosity of the 

medium, ¢, is constant, the fluid density p is constant, 
the Reynolds number based on particle diameter is 
low so that Darcy's law is applicable, the heat transfer 
process in the medium is in local thermal equilibrium, 
the viscous dissipation is negligible, the buoyant effect 
is neglected, and that the chemical reaction is sim- 
plified by a one-step reaction according to Arrhenius 
kinetics. It is also further assumed that the tem- 
perature change in the catalytic bed is small compared 
to the temperature of incoming fluid so that the fluid 
properties can be regarded as constants. Under these 
assumptions and after normalized with the length 
scale H and the velocity scale BH were B is the velocity 
strain rate, the conservation equations for the fluid 
mass and momentum are 

and 

Ou Ov 
+ v -  = o (1) 

Ox oy 

u = - +1 '2 .  t, 7 s + @2) 

Op (Or 2 0% I 
v = - ~yy + P~ ~Sx2 + ~yZ] (2a,b) 

subjected to the boundary conditions, 

u=v=O a t y = 0  

u = x , v = - y  a s y ~ o o .  (3a,b) 

In equation (2), P, = K x / ~ ¢ H  2) represents the ratio 
of Brinkman's viscous layer thickness to H and is 
usually very small. 

Similarly, if the temperature T and the mass con- 
centration Y of the reactant are normalized into 
0 = (T-- T~)/AT and G = Y/Yoo, where 
AT = I T . -  T~), with the subscripts w and oo denoting 
the values at the impermeable wall and at infinity, 
respectively, the non-dimensional conservation equa- 
tions for energy and mass-diffusion, respectively, are 

O0 O0 1 P O f~9®k, O / c 1 ® k 7  . 

and 

OG OG 
U-~x + v Oy 

(4) 

1 ~ 
Peie[~x (OGh+ 

(5) 

where the dimensionless chemical reaction rate I¢', 
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normalized by cY~ with c being the reaction rate 
constant, is described by 

= ] r ~ a  . 

I'V Gexp O+-T*~ 0 < y < 1" 
(6) 

The proper boundary conditions for equations (4), 
(5) are 

OG 
( 9 = 1 ,  ~ y = 0  a t y = 0  

O = 0 ,  G = I ,  a s y ~ .  (7a,b) 

In equations (4)-(6), Pe = BH2/c~o is the Peclet num- 
ber, Le = cte/D e the Lewis number, y,~ = c/pB the 
non-dimensional chemical reaction rate constant 
(also interpreted as Damkohler number), 
7r = Qc Y~/[(pCp)mBAT] the non-dimensional chemi- 
cal reaction heat, ~ the non-dimensional activation 
energy normalized by RATwith R being the gas con- 
stant and T*~ = T ~ / A T  the non-dimensional absolute 
temperature of the incoming flow. In the above defi- 
nitions, Q is the heat generation per unit mass rate of 
reaction and (pep) m = ~)pcp+ (1 -(b)psCps the volume- 
averaged heat capacity. The effective thermal diffu- 
sivity, c%, is usually contributed from a stagnant diffu- 
sivity and a thermal dispersion. It is known that the 
thermal dispersion depends on the Reynolds number 
based on the length scale of the pore structure in the 
medium. For  simplicity, however, we assume that ~e 
is constant. This assumption is plausible at low Rey- 
nolds number, and is consistent with the Darcy's law 
assumption in the momentum equation. Similarly, we 
also assume that the effective mass diffusion, De, is 
constant. 

P,. Figure 2 shows the profiles of u/x and - v  for 
/on = 0.01, 0.03 and 0.10. Clearly, the Brinkman's 
layer thickness is of order P,. 

4. TEMPERATURE AND CONCENTRATION 
PROFILES 

We now solve equations (4)-(6) satisfying the 
boundary condition (7). From equations (4) and (5) 
we notice that Pe-~/2 represents the thickness ratio of 
thermal boundary layer to the catalytic bed and that 
Le m represents the thickness ratio of thermal bound- 
ary layer to the mass diffusion layer. In this study, we 
assume that Pe >> 1, i.e., the catalytic bed is much 
thicker than the thermal boundary layer near the 
impermeable wall. The parameters Le, 7r and ~,,, are 
regarded as of order O(1). Hence, the mass diffusion 
layer is also much thinner than the catalytic bed, but 
comparable to the thermal boundary layer. In prac- 
tical operation of catalytic beds, the value of ~m is 
negative and 7r can be positive or negative for endo- 
thermic or exothermic reactions, respectively. The 
parameters T*~ and ~ are usually large; however, 
their ratio is assumed to be of manageable order for 
numerical computation. This is different from the 
treatment of Chao et al. [11] where 7~/T*~ was 
assumed to be small. 

Singular perturbation analyses 
Exact solutions to the equation system (4)-(7) can- 

not be obtained without invoking directly a numerical 
procedure. To gain more insights into the physics of 
the problem, we analyze the equation system with a 
singular perturbation method, using e = Pe-~/2 as a 
small parameter. Due to the mathematic complexity 
of the exponential term appearing in equation (6), the 
perturbation analysis will be carried out only up to 
o(~). 

3. VELOCITY FIELDS 

Since equations (l)  and (2) with the boundary con- 
ditions (3) are de-coupled from the energy and mass- 
diffusion equations, they can be solved independently. 
The solutions to equations (1) and (2) satisfying (3) 
are obtained by eliminating pressure terms first and 
then following the procedures given on page 96 of 
Schlichting [12] ; the results are 

u = x [ 1 - e x p ( - y / P , , ) ]  

v = - y + P n [ 1  - e x p ( - y / P , ) .  (8a,b) 

Note  that equation (8b) shows that v is a function of 
y only. Because P, is very small, the exponential terms 
in equation (8) can be usually omitted, except at the 
proximity of the impermeable wall. Therefore, in view 
of a far field the velocity field behaves like u = x and 
v = - y + P n ,  i.e., the impermeable wall appears as if 
it were located at y = P,. The Brinkman's viscous 
effect procedures a displacement thickness of order of 

Outer expansions 
In the outer region where y is of O(1), the outer 

variables are expanded into 

® = ®0+~®~ + " "  

G = Go+eGj + " .  

I ~ =  Woe+ W, + . . - .  (9) 

The substitution of equation (9) into equations (4)- 
(7) and expanding for small e leads to O(1) : 

uO®O + 0®o - T r W o  -~x roy= 

OGo 
+v  oG° = 7,~Wo (lOa,b) u~-x ay 

= ~ (10c) 
if/0 Go exp O 0 ~  1 >~ y ~> 0 

subject to boundary conditions, 
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Fig. 2. The velocity profiles of stagnation flows in porous beds. 

19o=0,  G o = l  a s y ~ o o  (11) 

and O(e): 

where 
0191 +va191 

u T T  x -&-y = - rTW,  

0G1 +v OGI = ymI~l (12a,b) U-~x Oy 

I'Pl = GI -'[-191 T~a 2 Golexp T~ 
(19o + T*~) J ®o + T*~ 

l>~y~>0 

subject to the boundary conditions, 

(12c) 

191 =G1 = 0  a s y ~  oo. (13) 

Note that the conditions at y = 0 for 19o and Go, as 
well as for 191 and G1, cannot be prescribed since 
the higher derivatives in the governing equations are 
omitted. From the above outer expansion, it appears 
that the diffusion terms in eqUations (4) and (5) do 
not play a role up to O(e), i.e., the outer solution 
up to this order behaves as if the medium is neither 
conductive nor diffusive. The transport is dominated 
by the convection and reaction. 

Outer solutions of O(1) 
We now solve the equation system (10) and (11) of 

O(1 ). The elimination of the right-hand side of (10a,b) 
gives 

OZo OZo 
U ~ x  + v ~ -  = 0 (14) 

u y  

Zo = 7mO0 +TrGo. (15) 

In this study, the Brinkman's viscous sub-layer is 
imbedded in the thermal boundary layer; therefore, 
we have u = x and v = - y  in the outer region. By 
invoking u = x and v = - y  and introducing the 
orthogonal streamline coordinate system (n, s) for the 
stagnation flow, i.e., xy = n and (x 2-y2)/2 = s (where 
n and s are normal to and along the streamlines, 
respectively), equation (14) reduces to OZo/OS = 0, i.e., 
Z0 remains constant along a streamline. The boundary 
conditions (1 l) then suggest that Z0 = 7r in the entire 
outer region. In fact, Z0 is the total active potential 
available for reaction of the incoming flow. 

In the inert bed where I/V 0 - 0, we have 

0®o t3®o 
uT;-x = 0 

OGo +vOGo 
U-~x 0y = 0. (16a,b) 

Hence, ®o and Go also remain constant along stream- 
lines. The boundary conditions (11) at y ~ ov lead to 
®o = 0 and Go -- 1 for 1 ~< y < 0% independent of x. 
Thus, the boundary conditions at the interface of inert 
and catalytic beds are given by 

19o=0, G o = l  and Z o = Y r  a t y = l .  (17) 

In the catalytic bed, Zo remains constant along 
streamlines, i.e., Zo = 7r; however, 190 and Go con- 
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tinuously change due to the chemical reaction, from equation (18), which are the matching con- 
Because Z0 7r for all x = and y, equation (15) reads ditions for inner solutions to be obtained later. 

G0 = 7T(1 - Go) (18) 
~m 

in the outer region. By invoking equations (10c) and 
(18) and u = x and v = - y  into equation (10b), the 
resultant equation, after transforming the coordinate 
from (x,y) to o__( ~, s) and changing the variable with 

= ½ In (~/n2 + s 2 _ s) = In y, becomes 

a(Iny) - VmGo exp 1 + C * - G o J  (19) 

where 

C*=:'m~, C *  = Y" ~ .  
7r Yr 

Because the boundary conditions at y = 1 are inde- 
pendent of  x, the partial derivative becomes the total 
derivatives ; therefore, Go is a function of  y only. The 
integration of  equation (19) with Go = 1 at y = 1 gives 

where 

f~ 1 o GoF(Go~ d G o =  7m In y (20) 

c* } (21) F(Go) = exp 1 + C* -- Go " 

Equations (20) and (21) suggest that as y -+ 0, F has 
to approach a positive constant value, say F*, and Go 
asymptotically becomes 

Go =Coy a a s y ~ 0  (22) 

where 2 = -7 , ,F* .  Since )~m < 0 (because the reaction 
always leads to the depletion of  reactant) and F* > 0 
from equation (21), 2 is greater than zero. Hence, 
Go ~ 0 as y ~ 0, and F* = F(0) from equation (21). 

By performing the asymptotic expansion to equa- 
tion (20) for y ~ 0 and comparing the expansion 
results with equation (22), the value of  Co is obtained 
a s  

Co = exp - exp 
x I + C *  l + C * - x  

(23) 
We also have, as y + 0, 

[ C* C°y~+O(y~)2] (24) Go = Coy; 1 ( l - C * )  z 

and 

Go = 1-Coy;+ ~ a  z C ~.2+0(y;.)3 ( 1 + C . ) 2  t oY ) 

(25) 

Outer solution of G(e) 
Following the procedures for the O(1) solution 

given above, it can be shown that Z~ = 7mG~+yrG~ 
remains constant along streamlines in both inert and 
catalytic beds. The implementation of  the boundary 
conditions (13) leads to Z~ = 0; hence, 

G 1 = - -  7 T G  I .  (26) 
Y,, 

Similar to the O(1) results, we have G) = GI = 0 in 
the inert bed. Therefore, the upper boundary con- 
ditions for the catalytic bed are 

Z 1 = G 1 = G, = 0 a t y  = 1. (27) 

In the catalytic bed, after invoking equation (26) 
and following the same analysis procedure for O(1), 
equation (12) reduces to 

[ ,T ] 
d( lny)=- - '~mG1 1-  Go '/,~ (Go + T * )  2 

T* }. (28) 
x exp Go + T*- 

Ideally equation (28) can be integrated from y = 1-0 
using the boundary condit ion (27) ; however, the lin- 
ear property of  equation (28) suggests that the mag- 
nitude of  the solution depends on a multiplication 
constant which can only be obtained by matching to 
the inner solution. The matching conditions as 
inferred from the inner solutions to be obtained later 
are ®j = G1 = 0 as y ~ 0. With the upper boundary 
condit ion (27), the only possible solution is G~ = 0, 
and hence Gz = 0 from equation (26). 

Inner expansions 
Consider now the region at close proximity of  the 

impermeable heated wall. We first stretch the outer 
coordinate into the inner coordinate by 

y = @  and x = 2 .  (29) 

The velocity fields in terms of  inner variables are 

u = a = 2 1 1 - e x p ( - ) ) / P . ) ]  

v = ef = - e [ ) ) - / s . [ 1 - e x p ( -  f /P.)]  (30a,b) 

where / s  = P./e represents the thickness ratio of  
Brinkman's  viscous layer to thermal boundary layer. 

Denot ing the inner variables by 0 and 9 for the 
temperatures and concentration, respectively, the gov- 
erning equations (4) (6) in terms of  the inner coor- 
dinate become 
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H +~0 (~y0~)-?rgexp{ 0+T*~} 
U ~x LeO.re ~x 

1 0 f0g \  [ 
+ ~ e ~ t ~ ) + T m g e x p  ~ - - -  

00(37) - ~ + 1 (37) 

jo E(t/) dq 

where 

0 - ~ } .  (31a, b) 
E(~) = exp [ ;  IJd,] 

The inner limits of the O(1) outer solutions suggests 
that the inner variables should be expanded into 

(32a,b) 

0 = Oo+eaO~+eOj + . . .  

g = go +e g~ +egl + "  ". 

In view that the Brinkman's viscous layer thickness 
depends on ft, only but not on (2, 37) and that the outer 
solutions are functions of)) only, the inner solutions to 
the order of accuracy under consideration have to be 
also functions of J) only, i.e., 00, 0~., 0~, g0, g~ and g~ are 
independent of 2. The dependence of the solutions of 

may occur only at higher order when the x-derivative 
diffusion terms in equation 32 into equation (31) 
become countable. The substitution of equation (31) 
leads to the following results. 

Inner solution of  0 (1) 
The governing equations of 00 and go are 

eOOo o (~Oo'~ f 

.Ogo 1 0 [Ogo'~ { T~. } (33a,b) 
v 037 L e O 3 7 t ~ )  q-Tmg°exp Oo~-T* ~ 

subject to boundary conditions, 

Ogo 0 0 = 1 ,  ~ - = 0 ,  at 3 ) = 0  (34a,b) 

and the matching conditions, 

~T Oo = - - ,  go = 0 as)9 --* oo. (35a,b) 
7,, 

The above boundary conditions for g0 suggest that 
the only possible solution for equation (33b) isg0 = 0. 
Therefore, equation (33a) reduces to 

000 0 
 36, 

which is characterized by pure conduc- 
tion/convection. The solution of 00 obtained by inte- 
grating equation (36) to satisfy the boundary con- 
dition (34a) and the matching condition (35a) is 

712 =exp[- ~-'}-ffn(e-'l/Po--1)+t3nrl]. (38) 

Note that from equation (38) 00 approaches ~)T/~m 
exponentially as )9--* oo. Hence, the matching con- 
ditions for the O(~) outer solutions are O1 = G~ = 0 
a s y ~ 0 .  

Inner solution of  O(e a) 
The governing equations for 0x and g~., after invok- 

ing g0 = 0, are 

oo~ o fooA f ~ ) V-o-f=~t~-f)--TTgxexp ~ Oo+T*~ 

v - t ~ f )  + ?mg~ exp -- (39a,b) 

subject to the boundary conditions, 

0g~ 
0 a = 0 ,  ~ = 0  at )7=0  (40a,b) 

and the matching conditions, 

0 ) = - T r C 0 Y  ~, g~=Co37 ~ as37--+oo. (41a,b) 
7m 

Equations (39)-(41) can only be solved numerically. 
This can be done by the simple Runge-Kutta pro- 
cedure since equations (39) are ordinary differentially 
equations o fy  only. Because equation (39b) is linear, 
the solution for gx can be obtained by integrating 
equation (39b) with the boundary condition (40b) and 
the condition, ga = 1 at 37 = 0, and then re-nor- 
malizing the integrated results to satisfy the matching 
condition (41b). The solution for 0; is then obtained 
by the integration of equation (39a) using a shooting 
method to satisfy the conditions (40a) and (41a). 

Inner solution of O(s) 
The perturbation equations for 0, and gl are ident- 

ical to equation (39) for 0a and g~, except 0a and g~. 
being replaced, respectively, by 01 and g~. However, 
the boundary conditions at the impermeable wall are 
replaced by 

091 
01 =0 ,  ~ - = 0 ,  a t ) ) = 0  (42a,b) 

and the upper matching conditions by 

0 1 ~ 0 ,  g l ~ 0  as )9~oo. (43a,b) 
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Except for the eigensolutions which may occur at cer- 
tain critical values of Le, the only possible solutions 
to satisfy the zero boundary conditions are that 

g l (Y)  ~ 0 , ( ? )  ~ O. (44) 

Composite solutions 
The composite solutions are constructed based on 

the additive principle as described in Van Dyke [13]. 
Since both the inner and outer solutions of O(e) are 
zero, the composite solutions become 

® = ®0 + 00 + 0~ - ®0~ + O(~ 2) + O(e 2~) 

G = Go +g0 +g;. - G0,~ + O(e 2) + O(e2)). (45a,b) 

In equation (45a,b), the O(1) outer solutions, ®0 and 
Go, are computed from equations (18), (20) and (21), 
the matching expansions, O0m and Gom , a re  obtained 
from equations (24) and (25), the O(1) inner solution 
00 is calculated from equations (37) and (38) and 
g0 -- O, and the O(e/) inner solutions, Oh and g3, are 
obtained by the direct integration of equations (39) 
(41). 

The singular perturbation analysis given above 
leads to two sequences, i.e. (e, e 2 . . . .  ) and (e ~, e2a . . . .  ). 
From equation (45) the accuracy of the composite 
solutions is up to O(g 2) or O(gZX), depending on 
whether 2 > 1 or 2 < 1. The value of 2 as evaluated 
with equation (21) is 2 = - 7mF(0) = 
--7~ exp [-7,.T~/(TT+TmT*~)]. 

5. RESULTS AND DISCUSSIONS 

There are six parameters, i.e., Pc, Le, 7m, 7r, 7~ and 
T*~, in the problem under consideration. It is difficult 
to cover all the interested cases by changing these 
parameters. Because e = Pe ,/2 is chosen as the small 
parameter for perturbation analysis, Pe = 100 is fixed 
in all numerical computations while varying other par- 
ameters. The values of (Le, 7m, •T, T~a) = 

(1 , -20 ,15 ,20 ,8)  are used as reference; when one 
parameter is varied the other four parameters are 
fixed. 

To demonstrate the accuracy of approximation at 
different orders, the profiles of concentration and tem- 
perature for parameters at the reference values are 
shown in Fig. 3 where the dashed curves are the O(1) 
results and the solid curves include the O(e;) correc- 
tions. Apparently, higher order correction is more 
profound for the concentration than for the tempera- 
ture, especially near the impermeable heated wall. The 
inclusion of the O(e ;) terms is needed to satisfy the 
zero mass flux condition of the concentration at the 
wall. Figure 3 shows that the concentration con- 
tinuously decreases as the fluid moves toward the wall. 
The depletion of the reactant is about 96%. The tem- 
perature profile shown in Fig. 3 indicates that the 
porous medium is cooled first since the reaction is 
endothermic when 7 r =  15. The medium near the 
impermeable wall is then heated up by the wall. The 

minimum temperature occurs at y/H ~ 0.25 where the 
heat required for reaction is balanced by the heat 
through conduction. 

The concentration and temperature profiles for 
different Le are depicted in Fig. 4. It is clear that the 
effect due to mass diffusivity on the concentration 
profiles is insignificant. This is because the diffusion 
process is confined in the thin thermal boundary layer. 
Most of the reaction takes place in the outer layer 
where the diffusion plays little role. Figure 4 also 
shows that the mass diffusion has almost no effect on 
the temperature profiles. Near the impermeable wall, 
the heat flux due to conduction is considerably larger 
than that taken by chemical reaction. This weak 
dependence on Le is also shown in Fig. 6 of Chao et 
al. [11] for the case of thick thermal boundary layer 
with exothermic reaction. 

Figure 5 shows the concentration and temperature 
profiles for different values of reaction rate constant. 
Apparently, the concentration as well as the tem- 
perature are sensitive to the reaction rate. Higher reac- 
tion rate constant leads to more depletion of the reac- 
tant, so as to faster cooling of the incoming fluid. 
Again, the effect of varying 7m is similar to that shown 
in Fig. 5a ofChao et al. [11] for the case of exothermic 
reaction. 

In Fig. 6, we show the temperature and con- 
centration profiles for different values of chemical 
reaction heat. We see that the chemical reaction heat 
has a very strong effect on the temperature, but only 
moderate on the concentration. This phenomena is 
anticipated, because the change in temperature caused 
by reaction leads only to small modifications of 
Arrhenius kinetics. Faster depletion for exothermic 
reaction than for endothermic reaction since the 
excess heat released by exothermic reaction is to heat 
up the reactant to promote the chemical reaction. 

Figure 7 shows the effect of reaction activation 
energy on the concentration and temperature profiles. 
It is found that for endothermic reaction of 7r = 15, 
large activation energy can greatly reduce the reaction 
rate. The lower activation level results in lower tem- 
perature in catalytic beds. 

The effects of temperature of incoming fluid on the 
performance of the catalytic bed are shown in Fig. 8. 
These effects are mainly due to the change in the 
Arrhenius kinetics since the temperature difference A T 
is used for normalization. The figure shows that the 
initial fluid temperature plays a strong role in con- 
trolling the chemical reaction. Higher initial tem- 
perature results in faster reaction. The results shown 
in Fig. 8 are similar to those shown in Fig. 7. The 
increase in 7~, has the effect equivalent to the decrease 
in T~o because the Arrhenius kinetics is basically char- 
acterized by the ratio 7~dT*~. 

6. CONCLUDING REMARKS 

In this paper, chemically reacting stagnation flows 
in catalytic beds has been studied. Singular per- 
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tu rba t ion  analysis was per formed under  the condi t ion  
tha t  the catalytic bed is much  thicker  than  the thermal  
bounda ry  layer. A t  a cons tan t  thickness rat io the 
results show tha t  the reac tant  concent ra t ion  is 
s trongly dependent  on  the parameters  related to the 
Ar rhen ius  kinetics, bu t  only weakly on whether  the 
chemical  react ion is endothermic  or exothermic.  The 
reason for such weak dependence on  chemical  reac- 

t ion heat  is because the change in fluid tempera ture  
does not  lead to any significant change  in the Arrhen-  
ius kinetics. Lower  concen t ra t ion  is resulted f rom 
higher  chemical  react ion rate constant ,  lower acti- 
vat ion energy or higher  incoming fluid temperature .  
The effect due to mass diffusivity on concen t ra t ion  
profiles is weak and  confined in the diffusion layer 
near  the impermeable  wall. On this g round  we can 
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infer that  the effect due to the thermal conductivity 
on the reactant concentration is also weak and con- 
fined in the thermal boundary layer. 

The present results show that the temperature in 
the catalytic bed depends strongly on chemical reac- 
tion heat and thermal conductivity, but only weakly 
on other parameters. The control of  the wall tem- 
perature is essential in preventing the catalytic beds 

from being over-heated in strong exothermic reaction 
or under-cooled in strong endothermic reaction. 

The present analysis includes the effects due to 
Brinkman's viscous layer The Brinkman's  viscous 
effect changes greatly only the velocity component  
along the wall, but not the component  normal to the 
wall. Fo r  stagnation flows the heat convection near 
the impermeable wall is mainly carried out by the 
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veloci ty  c o m p o n e n t  n o r m a l  to the  wall  ; therefore ,  the  
B r i n k m a n ' s  viscous effect is negligible in this  s tudy.  
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